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By tracking small particles in the bulk of an intensely turbulent laboratory flow, we
study the effect of long-chain polymers on the Eulerian structure functions. We find
that the structure functions are modified over a wide range of length scales even for
very small polymer concentrations. Their behaviour can be captured by defining a
length scale that depends on the solvent viscosity, the polymer relaxation time and
the Weissenberg number. This result is not captured by current models. Additionally,
the effects we observe depend strongly on the concentration. While the dissipation-
range statistics change smoothly as a function of polymer concentration, we find
that the inertial-range values of the structure functions are modified only when the
concentration exceeds a threshold of approximately 5 parts per million (p.p.m.) by
weight for the 18 × 106 atomic mass unit (a.m.u.) molecular weight polyacrylamide
used in the experiment.

1. Introduction
Minute amounts of long-chain, flexible polymers added to a fluid can strongly

modify its flow properties. In a turbulent wall-bounded flow, for example, polymer
additives lead to the extraordinary phenomenon of drag reduction (Toms 1948;
Virk et al. 1967; Lumley 1973; Sreenivasan & White 2000; L’vov et al. 2004;
Bonn et al. 2005). In slow, laminar flows, elastic turbulence strongly enhances
fluid mixing (Groisman & Steinberg 2000, 2001). These effects may be qualitatively
attributed to the stretching of polymer molecules by the velocity gradients in the flow.
Although progress has recently been made in understanding drag reduction at a wall,
comparatively little is known about the action of polymers far from the boundaries
of a turbulent flow (Liberzon et al. 2005, 2006; Crawford et al. 2002, 2008; Crawford
2004). In particular, the role of the polymer concentration is poorly understood,
though threshold concentrations for the onset of elastic effects have previously been
observed in elastic turbulence (Groisman & Steinberg 2001), using the same polymer
used in the present experiments.
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In a Newtonian fluid, viscosity provides the sole mechanism for the dissipation
of energy. In this case, the classical Richardson–Kolmogorov cascade hypothesis
(Kolmogorov 1941) states that energy is injected into the flow at large length and
time scales, transferred through the inertial range of scales without loss and finally
dissipated at the smallest scales at which viscosity acts. The addition of long-chain
polymer molecules to the fluid, however, provides a new mechanism for energy
dissipation. As suggested by Tabor & de Gennes (1986), when the polymers are
stretched by the flow, they store elastic energy. In a turbulent flow, the polymer
molecules continually stretch and recoil in the fluctuating flow field, dissipating
turbulent kinetic energy through the interactions between the monomers of a single
polymer molecule and between the polymers and the fluid. The turbulent energy
cascade may therefore be modified in a polymer solution, irrespective of any drag
reduction at the walls.

Newtonian turbulence is characterized solely by the Reynolds number Re. When
Re is large, eddies spanning a wide range of length and time scales participate
in the energy cascade. A polymer solution is additionally characterized by both
the polymer concentration φ and the Weissenberg number Wi , which compares
τp , the longest relaxation time of a single polymer molecule, to the fastest flow
time scale. For turbulent flows, therefore, Wi = τp/τη, where τη is the Kolmogorov
time scale. We note that Wi is sometimes defined using either the flow Lyapunov
exponent or the root-mean-square gradient; since we cannot measure either of these
quantities, however, we use τη to characterize the flow. When Wi is less than a
critical value (of order unity), the polymer molecules are generally in their coiled
state and are passively advected by the flow. When Wi is larger than this value,
however, the polymers will, on average, be stretched by the flow and may modify it
(Lumley 1973).

The effects of polymers on the properties of bulk turbulence have been investigated
previously, though questions still remain. Several studies have found that polymers
damp turbulence in the bulk of the flow, particularly at small scales (McComb, Allan
& Greated 1977; Tong, Goldburg & Huang 1992; Bonn et al. 1993; van Doorn,
White & Sreenivasan 1999). In these experiments, however, turbulence was forced
through boundary-layer interactions: McComb et al. (1977) and van Doorn et al.
(1999) studied grid-generated turbulence; Tong et al. (1992) used a Couette cell; and
Bonn et al. (1993) used a counter-rotating-disc flow apparatus with smooth discs.
In each of these cases, polymer drag reduction at the forcing element may have
played a role in the observed dynamics. In contrast, in a counter-rotating-disc system
with baffled discs, which forces the turbulence inertially, Cadot, Bonn & Douady
(1998) found that the energy injection rate was no different for pure water and a
dilute polymer solution. By using Lagrangian particle tracking in a low-Re inertially
forced experiment, Liberzon et al. (2005, 2006) found that the stretching rates of fluid
elements are lower in polymer flows (Liberzon et al. 2005), and through the same
method they also obtained direct evidence for an additional energy dissipation term
due to the polymers (Liberzon et al. 2006). At much higher Re and in the same
apparatus used in the present work, polymers were found to decrease the Lagrangian
acceleration variance (Crawford et al. 2002, 2008; Crawford 2004).

Isotropic turbulence in polymer solutions has also been numerically studied using
model equations for the polymers. Such simulations are, however, very challenging,
due both to the nature of the equations and to numerical instabilities (Vaithianathan
et al. 2006). De Angelis et al. (2005) found that polymers both reduced the energy
dissipation rate with respect to an identical Newtonian fluid and interrupted the
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energy cascade. Similar results were also found in the simulations of Perlekar, Mitra
& Pandit (2006). In very highly resolved simulations, Davoudi & Schumacher (2006)
studied the stretching of model polymers in a turbulent shear flow. Using similar
model equations, Casciola & De Angelis (2007) recently extended the traditional
Kármán–Howarth and Kolmogorov equations to polymeric turbulence.

We have studied the second-order Eulerian velocity structure functions, simple
probes of the energy cascade, in an inertially forced counter-rotating-disc flow, as
described in § 2. We investigate the flow far from the walls of our chamber; therefore,
we study not drag reduction but rather the effects of polymer additives on the
turbulent bulk. As shown in § 3, we find that even very small polymer concentrations
change the turbulence statistics over a wide range of scales. In § 4, we show that
the concentration plays a key role in determining the effect of the polymers on the
energy cascade: for small φ, the inertial-range statistics are unchanged, and only the
smallest scale statistics are modified, while for larger φ, both the dissipation-scale
and inertial-range statistics change. In § 5, we summarize our results and offer some
suggestions for further research.

2. Experimental methods
As described previously (La Porta et al. 2001; Voth et al. 2002; Bourgoin et al.

2006; Ouellette et al. 2006b), we generate turbulence in a water flow between two
counter-rotating baffled discs. Flow properties are measured by tracking (Ouellette,
Xu & Bodenschatz 2006a) the simultaneous motion of hundreds of nearly neutrally
buoyant 33 μm fluorescent polystyrene tracer particles. The particles are excited by a
high-power pulsed Nd:YAG laser delivering up to 90 W, and their images are recorded
with three Phantom v7.1 CMOS cameras from Vision Research (Wayne, NJ).

The polymer used was an 18 × 106 atomic mass unit (a.m.u.) molecular
weight polyacrylamide (Polysciences 18522) with an equilibrium radius of gyration
Rg = N3/5a =0.5 μm, where N is the number of monomers and a is the length
of a monomer, a fully stretched length of 77 μm and a relaxation time of
τp = R3

gμ/(kBT ) = 43 ms, where μ is the dynamic viscosity, kB Boltzmann’s constant
and T the temperature (Crawford 2004). We make the assumption that the polymers
do not interact with our tracer particles under the experimental conditions. While our
apparatus allows us to reach very high Reynolds numbers, the size and flexibility of the
polymer molecules make them prone to mechanical degradation in intense turbulence
(Groisman & Steinberg 2004). We therefore only consider Reynolds numbers at
which our results are not affected by polymer degradation (Crawford et al. 2002;
Crawford 2004). In our experiments, Wi ranges from 1.2 to 6.0; the Taylor-microscale
Reynolds number Rλ ≡

√
15u′L/ν ranges from 200 to 350 (measured in pure water),

where u′ is the root-mean-square turbulent velocity, L the integral velocity scale
and ν the kinematic viscosity. We find that L ≈ 7 cm does not change over the
range of Rλ considered here. In our experiments Wi and Rλ are coupled, since
Rλ =

√
15TL/τη =

√
15TLWi/τp , where TL is the large-eddy turnover time. We varied

the polymer concentration φ from 0 (pure water) to 20 parts per million (p.p.m.)
by weight. At such low concentrations, the kinematic viscosity changes only weakly
from its water value (Arratia, Voth & Gollub 2005). We also find that u′ varies only
weakly with φ, as shown in figure 1. Additionally, the inherent large-scale anisotropy
of our flow is not significantly affected by the polymers.

It is possible that Rλ may change upon the addition of polymers, since they
modify the small scales of the flow. We find, however, that the energy injection
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Figure 1. The velocity u′ as a function of φ for Rw
λ =350. All three components of velocity
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(estimated from the large-scale velocity) changes only weakly with such small polymer
concentrations, as was also observed by Cadot et al. (1998) in a similar apparatus.
Additionally, Liberzon et al. (2005) found that Rλ changed only weakly at the polymer
concentrations we use. We therefore choose to base Rλ on the large scales and report
its value as measured in pure water for a given rotation rate of the discs (Voth et al.
2002; Ouellette et al. 2006b). Additionally, since we cannot measure the Kolmogorov
scales directly, we infer them from scaling arguments based on statistics obtained in
pure water solutions. As a mnemonic, we therefore write the Kolmogorov length scale
as ηw and the Reynolds number as Rw

λ .
Eulerian velocity structure functions have traditionally been used as scale-local

probes of the energy cascade in Newtonian turbulence. They are defined to
be the moments of the spatial velocity differences over a separation r , δu(r) =
u(x + r) − u(x). These velocity differences may be thought of as coarse-grained,
scale-local gradients. In isotropic turbulence, the second-order structure function
tensor can be parameterized by two scalar functions: a transverse structure function
DNN (r), measuring the difference in the velocity component orthogonal to r , and a
longitudinal structure function DLL(r), where the velocities are taken parallel to r .
Here, we show only measurements of DNN (r); our results for DLL(r) are similar.

In isotropic Newtonian turbulence, we expect three distinct scaling ranges for
DNN (r). In the dissipation range (r � η),

DNN (r) =
2

15

εr2

ν
(r � η). (2.1)

In the inertial range, according to the Kolmogorov (1941) theory,

DNN (r) =
4

3
C2(εr)

2/3 (η � r � L), (2.2)

where C2 is expected to be a universal constant (Sreenivasan 1995). Finally, at large
scales (r � L), DNN (r) saturates at twice the velocity variance. There may, of course,
be intermittency corrections to this scaling law, but they are weak for second-order
statistics (Frisch 1995) and do not appreciably change our results. We note that even
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Figure 2. The values of DNN (r)/r2/3 for both water (�) and a 5 p.p.m. polymer solution (�)
at Rw

λ = 290 (Wi = 3.5); r is scaled by ηw , the Kolmogorov scale computed from the water
data. The polymer data reach an inertial-range plateau with the same value as the water data
but at a larger length scale.

though our flow is not isotropic, we observe pseudo-isotropic scaling by spherically
averaging our structure functions (Eyink 2003). Additionally, as we have a complex
large-scale mean flow in our apparatus, we subtract a time-averaged velocity field
from our measured instantaneous velocities before computing structure functions
from the velocity fluctuations.

3. Eulerian structure functions
The scaling relations presented above were derived for Newtonian turbulence; we

expect, however, that the scaling of the structure functions may be similar for dilute
polymer solutions. In figure 2, we plot DNN (r)/r2/3 at Rw

λ =290 for both pure water
and a φ = 5 p.p.m. polymer solution. Plotted in this way, we observe the expected
inertial-range plateau, where DNN (r) ∼ r2/3. Both data sets show such a plateau,
providing an a posteriori confirmation of our hypothesis that the scaling of the
structure function does not change in the polymer solution. We observe, though, that
the plateau occurs at a larger length scale in the polymer solution. At larger scales,
the polymer data collapse onto the water data, suggesting that the large scales of the
turbulence are not significantly modified by the presence of the polymer, at least at
such a low concentration.

The scale rp at which the polymer data in figure 2 returns to the water data is very
large compared with the size of the polymer molecule. For Rw

λ = 290 and φ = 5 p.p.m.,
we find that rp ≈ 150ηw = 16.6 mm, more than 200 times the fully stretched length
of a polymer molecule. This result suggests that rp is a dynamical scale rather than
one associated with the physical size of the polymers. In pioneering work, Lumley
(1973) suggested that the length scale of any polymer effect should be determined
purely by the time scale on which the polymer recoils. This (inertial-range) length
scale r∗ = (ετ 3

p)1/2 is the scale at which the local Wi is unity and at which we expect
the polymers to begin to be stretched by the flow; r∗ may also be obtained by using a
Kolmogorov-style argument and assuming that the polymer couples with the flow only
through its time scale. Since r∗ ∼

√
ε and therefore scales with Rw

λ , we tested Lumley’s
(1973) ‘time criterion’ hypothesis by varying Rw

λ while fixing φ; r∗ is expected to
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Figure 4. (a) Fractions f of the compensated DNN (r) scaled by (ντp)1/2 as a function of Wi .
From bottom to top, f = 0.2, 0.3, 0.4, 0.5 and 0.6. The solid lines are fits of a Win power
law to the data. Averaging over different values of f , we find that n= −0.58 ± 0.09. The
dashed line shows a reference n= −1 power law, for comparison with the model of Fouxon
& Lebedev (2003). (b) The compensated structure functions scaled by (ντp)1/2Wi−0.58. The
collapse is significantly better than that shown in figure 3(b).

increase with Rw
λ . As shown in figure 3(a), however, rp appears to decrease (in physical

units) as Rw
λ increases. Therefore, as shown in figure 3(b), rp �= r∗; that is Lumley’s

(1973) theory does not appear to apply to polymer effects in the bulk of the flow.
Instead, since the typical size of the polymer molecules lies in the dissipation range,

we propose a length scale that includes viscous effects to capture the behaviour of the
structure functions. We note that (ντp)1/2 is the viscous length scale for the polymers,
just as (ντη)

1/2 = ηw is the viscous length scale for the turbulence. We expect that
a combination of this scale with Wi , which describes the mean stretching by the
flow, will capture the effect we see. We assume that rp ∼ (ντp)1/2Wi n. As shown in
figure 4(a), by fitting many fractional cuts of the compensated structure function
scaled by (ντp)1/2, we find that n= −0.58 ± 0.09. Figure 4(b) shows the compensated

structure functions with r scaled by (ντp)1/2Wi−0.58; the data collapse much better
than in figure 3(b).
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Figure 5. The effect of polymer concentration on DNN (r) at Rw
λ = 350 (Wi = 6.0, ηw = 84 μm).

Data are shown for φ = 0 p.p.m. (�; pure water), 1 p.p.m. (�), 5 p.p.m. (�), 7 p.p.m. (�), 10 p.p.m.
(�) and 20 p.p.m. (+). In (a), DNN (r) is scaled by r2/3, its inertial-range scaling prediction. In
(b), we scale instead by r2, as predicted for the dissipation range.

Our result is not predicted by current theory. Fouxon & Lebedev (2003) have
predicted that turbulence in a polymer solution supports elastic waves, similar to
Alfvén waves in a plasma, for the range of scales η∗ � r � r∗, where η∗ = ηWi−1/2.
Rewriting our result, we have rp = ηWi n+1/2. For rp to be equivalent to η∗, we would
need n= −1; since instead we find n= −0.58 ± 0.09, rp is different from η∗. It is
unlikely that the Fouxon & Lebedev (2003) theory applies to our system; our result
therefore awaits theoretical explanation.

4. Concentration effects
We now explore the concentration dependence of the polymer effects by fixing

Rw
λ and varying φ. In figure 5(a), we show DNN (r)/r2/3 at Rw

λ = 350 (Wi =6.0) for
φ ranging from 0 p.p.m. (pure water) to 20 p.p.m. For small φ (�5 p.p.m. in our
experiments), the shape of DNN (r) does not change in the presence of polymers: the
curves reach an inertial-range plateau with a value that is independent of φ, though
rp does change with φ. At higher φ (�7 p.p.m.), however, the apparent inertial-range
plateau is decreased relative to the water data, though the data still appear to scale
as r2/3 above rp . These results suggest that there is a critical concentration φc below
which the Newtonian scaling constant (4/3)C2ε

2/3 in unaffected by the polymers.
Above φc, either C2 must change, which would imply a breakdown of turbulent
universality, or ε must be decreased, implying that less energy is transferred to small
scales than in the traditional energy cascade. Determining which of these possibilities
is occurring would require an independent measurement of ε. Unfortunately, however,
our current experimental method does not allow us to make such a measurement. We
must therefore leave this point as an open question.

It may also be seen in figure 5(a) that rp increases with φ, which suggests that
the dissipation-range statistics of the flow may also vary with φ. We therefore show
in figure 5(b) DNN/r2, where we now expect to see a plateau in the small-scale
dissipation range. Due to the finite spatial resolution of our measurement system,
these very small scales are only partially resolved. This effect is more pronounced
for the pure water case, since the small scales appear to increase in the presence
of the polymer. Even so, for the water case, we find that the values of ε measured
from the dissipation-range scaling and the inertial-range scaling of DNN (r) agree to
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of DNN (r) (�) and the dissipation-range scaling of DNN (r) (�) at fixed Reynolds number
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λ = 350; Wi = 6.0). While the value of ε extracted from the dissipation range decreases
smoothly as φ increases, the value extracted from the inertial range changes only when
φ > 5 p.p.m.

within our experimental accuracy, suggesting that our dissipation-range statistics are
resolved well enough to draw conclusions from. We note that in figure 5(b), the slope
of the curves in the range 10 < r/ηw < 100 varies with φ. We interpret this result to
be due to smooth interpolation of the data between the small-scale r2 scaling and the
inertial-range r2/3 scaling over intervals that grow with φ.

The polymer effect we see in the dissipation range is qualitatively different from our
results in the inertial range. While we found evidence of a critical concentration in the
inertial range, figure 5(b) shows no such sharp change with φ. Instead, the damping of
the small scales by the polymers appears to increase smoothly with increasing φ. We
note that, just as for the inertial range, the structure functions in the dissipation range
appear to show the same scaling (i.e. DNN (r) ∼ r2) in both the water and polymer
cases; only the scaling constant (2ε)/(15ν) differs.

To determine if a simple renormalization of ε while holding C2 and ν constant
could consistently capture our results, we extracted a value of ε(φ) from both the
dissipation-range and inertial-range scaling ranges of DNN (r), as shown in figure 6.
The two curves are very different, suggesting that the polymer effects are more
complex than a simple damping of ε as the concentration is increased. Our observed
critical concentration in the inertial range is also indicative of more complex physics.

The physical basis for the observed transition at φ ≈ 5 p.p.m. remains unclear. One
possibility is that it may result from polymer–polymer interactions that occur only
above the so-called overlap concentration. For the polymer used in our experiments,
the overlap concentration based on the maximum extension length is ∼ 10−4 p.p.m.,
while it is approximately 200 p.p.m. if based on the radius of gyration. Neither of
these estimates coincides with the critical concentration observed in our experiments.
The critical concentration proposed by Balkovsky, Fouxon & Lebedev (2001) also
does not match our results. We note that φ ≈ 7 p.p.m. was found to be the threshold
for the onset of efficient mixing in elastic turbulence (Groisman & Steinberg 2001),
using the same polymer as in our work.
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We note that Tabor & de Gennes (1986) suggested a qualitative framework for
polymer dynamics in turbulence that could account for a critical concentration. In
their model, they defined a length scale r∗∗ based on balancing the turbulent kinetic
energy and the elastic energy stored by the polymers as a function of scale. Since each
polymer molecule can store some elastic energy, increasing the number of polymers
increases the total energy in the polymer phase, so that r∗∗ is a function of φ. They
then defined a critical concentration φ∗, determined by r∗∗(φ∗) = ηw , for the onset of
polymer effects. There are, however, both undetermined parameters in their qualitative
theory and questions about the validity of their assumptions (Ryskin 1987). Further
development is therefore needed to make a quantitative experimental test.

5. Summary
We have investigated the effect of very small concentrations of long-chain polymers

on the dynamics of turbulence in the bulk of the flow. Our main findings are (a) that
the length scale rp at which the structure functions in the polymer solutions begin to
scale as r2/3 decreases with Rw

λ , and rp ∼ (ντp)1/2Wi n with n= −0.58 ± 0.09; (b) that
there is a critical concentration φc below which the structure functions reach the same
inertial-range values as in Newtonian turbulence, though at a larger length scale that
increases with φ; and (c) that the dissipation-range scales are depressed smoothly as
a function of φ. These results cannot be explained by current theory.

A potential interpretation of these results is that the introduction of polymers into
the flow modifies the energy cascade so that the rates of energy injection, transfer and
dissipation for the turbulence are no longer all equal, as they must be in Newtonian
turbulence where viscosity provides the only mechanism of energy dissipation. In order
to test this hypothesis, new experimental techniques that can accurately measure these
three energy rates independently are required.

Our results suggest several challenges for future research. The qualitative change in
the polymer effect above the critical concentration must be explained, and the exact
ways in which the polymers affect the energy cascade must be clarified. And finally,
if Lumley’s (1973) time criterion does not hold in the bulk, a physical mechanism by
which the polymers can affect scales much larger than their size must be identified.

We are grateful to L. Collins and D. Vincenzi for helpful discussions over the
course of this work; to A. Pumir, M. Gibert, W. Pauls and M. Torralba for comments
and suggestions for the manuscript; and to A. Crawford for developing experimental
protocols that give repeatable, robust results. This work was supported by the National
Science Foundation grants, no. PHY-9988755 and no. PHY-0216406, and by the Max
Planck Society.
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